The Probabilistic Stability for a Functional Nonlinear Equation in a Single Variable
نویسنده
چکیده
We use the fixed point method to prove the probabilistic Hyers–Ulam and generalized Hyers–Ulam–Rassias stability for the nonlinear equation f (x) = Φ(x, f (η(x))) where the unknown is a mapping f from a nonempty set S to a probabilistic metric space (X ,F,TM) and Φ : S×X → X , η : S → X are two given functions. Mathematics subject classification (2000): 39B52, 39B82, 47H10, 54E70.
منابع مشابه
A fixed point approach to the Hyers-Ulam stability of an $AQ$ functional equation in probabilistic modular spaces
In this paper, we prove the Hyers-Ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$
متن کاملApplication of the Kudryashov method and the functional variable method for the complex KdV equation
In this present work, the Kudryashov method and the functional variable method are used to construct exact solutions of the complex KdV equation. The Kudryashov method and the functional variable method are powerful methods for obtaining exact solutions of nonlinear evolution equations.
متن کاملA new method for the generalized Hyers-Ulam-Rassias stability
We propose a new method, called the textit{the weighted space method}, for the study of the generalized Hyers-Ulam-Rassias stability. We use this method for a nonlinear functional equation, for Volterra and Fredholm integral operators.
متن کاملIntuitionistic fuzzy stability of a quadratic and quartic functional equation
In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.
متن کاملStability of generalized QCA-functional equation in P-Banach spaces
In this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.
متن کامل